Amir Tadros

(650) 889-0540 | amirtadros01@gmail.com | linkedin.com/in/amir-tadros | amirtadros.com

EDUCATION and SKILLS

University of California, Irvine

B.S. in Mechanical Engineering, Specialization in Design of Mechanical Systems

Skills: SOLIDWORKS, CURA, MATLAB, FEA, GD&T, MS Office, Adobe Illustrator, 3D Printing, Laser Cutting, Soldering Minor in Computer Science

Skills: C/C++, Python, MIPS, Microcontrollers, Embedded Systems, Computer Architecture, Digital Logic Design, IoT, AI **PROFESSIONAL EXPERIENCE**

Lighter Than Air (LTA) Research and Exploration, Mechanical Engineering Intern

LTA Research is an aerospace research and development company building experimental and certified manned and remotely piloted airships.

- 3D modeled 1,000+ parts and assemblies in SOLIDWORKS for flight hardware, assembly jigs, and testing equipment
- Designed 50+ diagrams using SOLIDWORKS Drawings and Adobe Illustrator for installation procedures
- Managed multiple projects resulting in the design, fabrication, and installation of essential electro-mechanical systems

UCI Cargo Plane Project

UCI Cargo Plane is a senior design competition project competing to build the best low speed, high lift aircraft to carry soccer balls and metal weights. **Project Manager** March 2022 – Present

- Leading a team of 36 engineers to build an 8' wingspan cargo airplane to carry soccer balls and metal weights
- Own PM responsibilities including organizing meetings, maintaining a Gantt chart, and writing progress reports
- Created and maintaining a budget of \$5000 by managing sub team purchase orders and monitoring team resources

Structures Team Lead

- Led a team of 9 engineers through the structural design process given parameters from other teams
- Met with other team leaders to manage inter-team tasks and report progress updates
- Created SOLIDWORKS library of templated parts and assemblies to accelerate future years' development

Stanford Robotic Exploration Lab (REx), Drone Engineering Intern

- The Robotic Exploration Lab conducts research in control, motion planning, and navigation for robotic systems that explore our planet and our universe.
 - Mechanically designed and assembled a fleet of 5 drones to be used by Stanford graduate students for computational research
 - Designed and fabricated circuit to interface traditional Radio Receiver, Drone Flight Controller, and ODROID-XU4
 - Created engineering drawings and instructions to maintain or rebuild drones throughout their lifetime

PERSONAL PROJECTS

Autonomous Pneumatic Cart

For this competition, we began with a set of pneumatic and electrical components and tasked with designing and programming a cart that successfully navigated a course.

- Designed and manufactured crank shaft power train, Akerman steering assembly, and chassis in SOLIDWORKS
- Programed Arduino with lowpass filter for our compass module (Hardware I²C) to remove noisy data when solenoid fires
- Used a reed switch and magnets as interrupts to create a digital timing belt for firing our pneumatic piston crank shaft
- Tracked position, velocity, and acceleration for our custom closed loop PID controller to accurately navigate the course

SafeCycle – ESP-32 Based IoT Sport Tracker

We designed an IoT device that can track a biker's position, velocity, and acceleration to provide useful information and call emergency services if we detect a fall or crash.

- Used NEO-6M GPS (Serial) and IMU (Hardware I²C) to track location and acceleration
- Programmed device to communicated with smartphone via BLE and send data to Flask server
- Displayed live information feed from sensors on an OLED display (Hardware I²C) mounted on top of our device
- Processed user input via 2 buttons to make selections, trigger interrupts, and support deep sleep functionality

Monster Sudoku Solver AI

Program an AI that can solve a Sudoku board of any size or shape using a variety of heuristic strategies.

- Designed and developed an AI that can solve a sudoku board of any size or shape given any number of values
- Implemented 5 different heuristics to find the optimal Sudoku solving strategy
- Collaborated with team members on a remote server with team members via SSH and git

Certificates and Memberships

Certified SOLIDWORKS Professional - Mechanical Design

Proven ability to design and analyze parametric parts and moveable assemblies using a variety of complex features in SOLIDWORKS software.
ASME
November 2020
National Speech and Debate Association Degree of Distinction
May 2019

National Speech and Debate Association Degree of Distinction Eagle Scout

Interests: Sailing (UCI Sailing Team Captain), Cooking, Baking, Music, Gaming, Travel, Hiking, Camping

January 2022 – March 2022

August 2021

November 2018

May 2019 – August 2019

March 2022 – June 2022

March 2022 – June 2022

July 2021 – March 2022

Graduate June 2023

July 2021 – Present

January 2021 – August 2022